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Notes on Design Through Arti�ial Evolution:Opportunities and AlgorithmsAdrian Thompson1Evolutionary & Adaptive Systems Group,University of Sussex,Brighton BN1 9QH, UKadrianth�ogs.susx.a.ukAbstrat. An attempt is made to isolate a lass of design problems that onlyevolutionary methods an takle. A preliminary evolved design for a nano-eletroniiruit is found to ontain a swithing element that relies on the stohasti passageof eletrons due to thermal noise. Suh phenomena have been exploited by naturalevolution in neural systems, but not before for iruit design. There is room foran imaginative leap into areas of design spae only aessible through evolution.Analysis of the evolution of a seond iruit reveals that neutral evolution playeda key role, and an be a natural property of evolutionary design. The developingtheory of evolutionary design promises pratial future bene�ts.1 IntrodutionThere are times when arti�ial evolution an be applied pro�tably eventhough more traditional methods are available. It is also possible for evo-lution to produe designs that ould not pratially be arrived at any otherway. In the latter ase, reativity is needed to experiment with potential ap-pliations, beause the possibility of suh designs has not existed before. Intandem, areful analysis of what exatly evolution an do is required. Thesenotes aim to give some insights into evolution beyond the sope of onven-tional design. Examples (intended to be intriguing) are drawn from the au-thor's work on eletronis design, but they illustrate priniples for design ingeneral.The notes are divided into two parts. `Opportunities' o�ers some remarkson the evolution of radially unonventional designs, and gives an exampleof an evolved nano-eletroni design that employs dynamial priniples pre-viously seen in the literature of neurosiene, but not of nano-eletronis.The `Algorithms' setion then provides food for thought on what types ofevolutionary algorithm may be able to takle hallenging design problems inthe future, given developments in omputer arhiteture. An example showshow a very simple mutation-driven algorithm an arrive at a surprisinglysophistiated design if neutral evolution is allowed.
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2 Evolutionary Design: OpportunitiesFor the sake of disussion, let's agree that evolution onsists of seletionating repeatedly on heritable variation, where that variation is essentiallyblind, rather than inorporating detailed heuristis.For design problems, the evolutionary algorithm (EA) determines someof the struture and/or parameters of a reon�gurable objet. This objetmay exist in software, though that ould be a simulation of the hardware ofan eventual implementation. The reon�gurable objet might alternativelybe physially hangeable hardware.Typially, the objet is embedded in some sort of environment, to whih itresponds, whih it inuenes, or in whih it behaves. The EA designer devisesa �tness evaluation proedure that monitors and possibly manipulates theenvironment and objet, and returns objetive funtion values.In the examples to follow, the objet is an eletroni iruit, either sim-ulated, or as a �eld-programmable gate array (FPGA) | a physially re-on�gurable integrated iruit. The iruit behaves in the environment whensupplied with test inputs, and the evaluation proedure indues those inputsand measures the quality of the behaviour. The evaluation may also inludenon-behavioural measurements of the objet itself, suh as size and poweronsumption.A more subtle ase would be the evolution of a musial sore that is toprovoke a human to report a partiular kind of feeling [1℄. The musial soreis the reon�gurable objet, but it is the behaviour of the whole immenselymore omplex system that is rafted by evolution.Figure 1 shows how the situation appears to the evolutionary algorithm.It generates strutural/parametri variations of the objet, by applying vari-ation operators (suh as mutation and rossover) to some representation ofthe objet's on�guration. All it gets bak are the measured objetive val-ues: we an think of the entire evaluation/environment/objet omplex as ablak-box system.
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Fig. 1. A view of an evolutionary algorithm oupled to a `blak box' system.
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De�ning this blak-box system allows us to onsider three separate asesthat tease apart the di�erenes between evolutionary and onventional design:a) Inverse model is tratable: If there is a tratable `inverse model' ofthe system, then there is a way of working out in advane a sequeneof variations that brings about a desired set of objetive values. `Con-ventional' methods an be applied: the blind generate-and-test nature ofevolution is not essential, though it still may be that evolutionary meth-ods are ompetitive.b) Inverse model is not tratable, but forward model is: In this ase,we an predit the inuene of variations upon the objetive values, butthe system is not tratably invertible so we annot derive in advane a se-quene of variations to bring about a desired set of objetive values. Thisimplies an iterative approah, where variations arefully seleted aord-ing to the forward model are applied in sequene. This kind of iterativedesign-and-test is a ommon omponent of traditional approahes. Searhtehniques, inluding evolutionary algorithms, an be ompetitive or insome ases the only viable hoie [2℄.) Neither forward nor inverse models are tratable: There is neithera way of diserning whih variations will give improvements in the obje-tive values, nor a way of prediting what will be the e�ets of variationsupon the objetive values. Without evolution all is lost. By our tenta-tively agreed de�nition, evolutionary methods are those that proeed byinrementally applying variations that are essentially blind. Seletion anlead to an improvement in objetive values with neither a forward nor aninverse model. Whether evolutionary methods atually sueed in �nd-ing a satisfatory design is another matter, but they are the only wayto do it. Note that our de�nition of evolution enompasses methods thathistorially have not been related, suh as simulated annealing.Thus there is an entire lass of design problems that an only be takled byevolutionary methods. Pratially speaking, where are these problems? Thereare few examples, beause evolutionary design is in its infany: previouslysuh design problems have had to be avoided or irumvented. Figure 2 showsone example prior to the birth of the �eld of evolutionary omputation.We are now in a situation demanding a leap of imagination for EA pra-titioners. Previously, design problems had to be onstrained or simpli�ed toform type (a) or (b) systems. We an now explore a wider spae of designs,though these will inevitably seem strange.Consider the design for an eletroni iruit shown in Figure 3. As ir-uit sizes are redued towards the nano-sale, it beomes neessary to exploitquantum e�ets diretly for omputation and data storage, rather than at-tempting to suppress them in marosopi approximations. How an quantume�ets best be employed? The literature is full of ideas [5℄, but there is noonsensus. This experiment, fully reported in [6℄, was a preliminary attempt
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Fig. 2. Golf balls: one of the few examples of true evolu-tionary design outside of the �eld of evolutionary om-putation. Dates are approximate.(a) is a `featherie' made by paking an enormous quan-tity of feathers into a hide asing. These balls wereexpensive.(b) is an early `guttie' made of solid gutta perha (arubberish tree sap). The primary advantage was lowerost, but these smooth balls were found not to travelas far as featheries.It had been notied that used featheries, whih had a-quired niks and uts, travelled further than new feath-eries. Adding surfae texture to gutties was found tohave a similar e�et, and various patterns of uts ()and raised mouldings (d,e) were blindly but inremen-tally experimented with. The �rst balls with a woundrubber ore (f) followed suit. Modern balls favour dim-ples (g), and it is only relatively reently that the aero-dynamis ausing a rough ball to travel further havebeen understood [3℄.Interestingly, some of the very �rst expliit forays intoarti�ial evolution also designed the aerodynamis of aphysial system [4℄.
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Fig. 3. An evolved `single eletron' NOR gate for a temperature of 340mK in asimpli�ed senario. Fixed values: C2 1.000e-12F; C8 3.333e-13F; C9 3.333e-13F.Evolved Values: C1 4.858e-19F; C3 9.969e-14F; C4 2.052e-16F; C5 1.000e-13F; C63.393e-16F; C7 2.975e-15F; J1 4.000e-19F 4.950e+06
; J2 4.000e-19F 5.766e+05
;J3 4.059e-19F 9.024e+04
; J4 4.237e-19F 5.854e+04
; J5 3.632e-16F 2.886e+07
;J6 4.857e-19F 5.000e+04
; Vb -1.000e-04V; Vfalse -8.368e-05V; Vtrue -8.488e-06V
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to allow evolution to explore the design spae as a type () system, with theminimum or simplifying onstraints or prejudie.The dots represent isolated ondutive islands between whih eletronsan move through quantum-mehanial tunnelling. The size, shape, and po-sition of the islands determines their apaitive oupling (marked Cn) andthe resistane whih haraterises a tunnel juntion (Jn). Although unreal-isti in many respets, the experiment did respet the neessity of a loaltopology that allows interating islands to be physially adjaent.This simple NOR gate was evolved in simulation for a temperature of340mK. This is old, but many studies onentrate on analysis at 0K; evenat 340mK the eletrons have suÆient thermal energy (`noise') to hallenge adesigner. It is expeted that the performane of a iruit will fall with risingtemperature, but Figure 5 reveals that the evolved iruit's behaviour alsodegrades as the temperature is dereased from 340mK. This kind of behaviourhad never been seen in suh proposed `single eletron' iruits before, andindiates that the iruit atually exploits or relies upon the thermal noiseof the eletrons at 340mK. This is not neessarily desirable, and perhapsby evaluating aross a range of temperatures during evolution a thermallyrobust solution ould be found [7℄, but we see immediately that evolution isexploring a previously inaessible part of design spae.Cirled in Figure 3 is the well-known on�guration of a `single eletrontransistor', whih has subtle dynamis that at as a swith if used arefully.It does indeed at as the main swithing element in this iruit, but at 0K noeletrons ever have suÆient energy to pass through the swith, no matterwhat the iruit's inputs are. The iruit relies on the thermal energy of theeletrons at 340mK to exite them to pass through the swith in a stohastimanner, inuened by the inputs. This type of phenomenon is found in avariety of physial systems [8℄, and has been exploited by natural evolutionin some neural systems, but not before in eletroni iruit design.There is room for debate in the disussion above, but the argument isompelling that we are now faed with an imaginative leap into new territoriesof design spae that are aessible through evolution. Some other explorationsin evolutionary eletronis an be found in [9,10℄.3 Evolutionary Design: AlgorithmsA formal analysis of the omputational omplexity of an algorithm is nota perfet guide to real-world performane. For example, the omplexity ofsorting algorithms has been muh studied, but the order in whih they makememory aesses an be entral to performane on a modern omputer havinga partiular arhiteture of memory ahes [11℄. Similarly, it may be thatthe evolutionary algorithms of hoie for large-sale design problems in thefuture will be those that an exploit parallel arhitetures, suh as `Beowulf'networks of heap o�-the-shelf PCs onneted by low-bandwidth links [12℄.
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What kinds of evolutionary algorithms are apable of produing a om-plex design? An experiment fully reported in [7℄ evolved the on�guration ofan FPGA hip for a simple tone-disrimination task. The task was halleng-ing beause no prior rules were enfored regarding how the logi ells on thehip ould be onneted, but the �tness evaluations required that on�gu-rations should perform well on a variety of samples of the hip at di�erenttemperatures. Without the onstraints of digital design rules, most on�gu-rations of the hip result in badly-behaved iruits, perhaps displaying wildosillations or an extreme sensitivity to the harateristis of the silion orits temperature. The experiment was to determine whether a robust solutionould be found that did not simply redisover onventional design rules.For a �tness evaluation, a variety of hips needed to be on�gured andmonitored: for example, one was heated, and another was in a freezer. Thehips ought to be well eletrially isolated from eah other to prevent mutualinterferene. These fators meant that the best way of on�guring the hipswas over a serial interfae needing few wires, but that is slow. It was deidedto try a simple (1+1) evolution strategy (ES), so that only single mutationsneeded to be sent to the hips most of the time, rather than full on�gurations.The ES maintained a single individual, and tested mutants of it. If a mutationaused a redution in �tness, it was rejeted, otherwise it was aepted. Thisis simply a random-asent hill limber allowing neutral moves, but has theessential ingredients of evolution.The experiment sueeded, and a robust asynhronous design was foundthat ould not have resulted from normal design priniples. Why did the sim-ple mutation-driven ES not get stuk on a loal optimum? Consider Figure 6.The iruits have been empirially pruned to show only the omponents andonnetions involved in generating their behaviour. Ciruit (a) is near thebeginning of a �tness plateau over whih many neutral mutations are made.(Some evaluation noise is visible, but the underlying �tnesses on the plateauwere equivalent.) It turns out that if we test all possible single mutationsof iruit (a), none of them result in improved �tness. At �rst glane, thismight suggest that the simple ES is now stuk. Thousands of neutral mu-tations are then made, resulting in iruit (b) of equal �tness. Notie thatthese mutations did not merely a�et `junk' iruitry around the periphery,but made signi�ant hanges to the struture of the funtional ore shownhere. Then iruit (b) aquired a single mutation to give iruit (), nowwith a higher �tness. That single mutation was the onnetion shown in boldrunning aross the lowest FPGA ell in (). The onnetions shown dotted in(b) are not involved in generating behaviour, but in () they are. The neutraldrift has moved us from a iruit that annot be improved upon by singlemutations to one that an, and eventually an improving mutation was found.
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Fig. 6. (Centre) The �tness graph for a (1+1)ES used to design the on�gurationof a �eld-programmable gate array hip. (a) The funtional part of the iruit at13000 mutations, near the beginning of a �tness plateau. (b) The funtional partof the iruit at the end of the plateau, 3144 mutations later. () The funtionalpart of the iruit 1 mutation later, now with a higher �tness.
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No laim is made that this evolutionary run was eÆient, but given itsdesirability for hardware onveniene it was able to work. The analysis showsthat neutral variations played a ausal role in the ourse of evolution. Theability to make neutral variations was a natural outome of the appliationof evolutionary variation operators to a design objet, and is not peuliarto this experiment. Neutrality is only reently oming to be disussed in theevolutionary omputation ommunity (e.g. [13,14℄), but appears to be aninherent property of evolutionary design. Despite the apparent maturity ofthe �eld of evolutionary omputation, it is heartening that further theoretialand empirial analysis of evolutionary design an be of pratial power.4 ConlusionGiven that the �eld of evolutionary omputation is now fairly mature, it istempting to think that there is a good understanding of what evolutionarydesign an ahieve, and how. These notes have aimed to suggest the ontrary.An argument was o�ered that there is a whole lass of design problemsthat only methods with an evolutionary avour an takle. Designs of thiskind are found in nature, but not before for artifats exept in rare ases.An example of an evolved nano-eletroni iruit showed a dynamial e�etgenerally only exploited in the works of natural evolution. It was then seenthat neutral variation an be a natural part of evolutionary design that anruially a�et the outome. Without making any grand laims for the po-tential ahievements of arti�ial evolution in the future, it seems that theenterprise is still young.Thompson is grateful for an EPSRC Advaned Researh Fellowship. Spe-ial thanks to Phil Husbands, Inman Harvey, Paul Layzell, and ChristophWasshuber.Referenes1. G. L. Nelson. Sonomorphs: An appliation of geneti algorithms to thegrowth and development of musial organisms. In Pro. 4th Biennial Art &Tehnology Symp., pages 155{169, Connetiut College, Marh 4{7th, 1993.http://timara.on.oberlin.edu/~gnelson/papers/morph93/morph93.htm.2. P. P. B. de Oliveira, F. M. Ramos, R. C. Gatto, et al. A researh agenda foriterative approahes to inverse problems using evolutionary omputation. InPro. 3rd IEEE Int. Conf. on Evolutionary Computation, pages 55{60. IEEEPress, Pisataway NJ, 1996.3. M. Fishetti. Flight ontrol. Sienti� Amerian, June 2001.4. I. Rehenberg. Cyberneti solution path of an experimental problem. RoyalAirraft Establishment, Library Translation 1122, 1965. Reprinted in `Evolu-tionary Computation| The fossil reord', D. B. Fogel, ed., hap. 8, pp297-309,IEEE Press 1998.



www.manaraa.com

5. I. Csurgay, W. Porod, and S. M. Goodnik, editors. Int. J. Cir. Theor. Appl.Speial issues on nanoeletroni iruits. John Wiley & Sons, 2000/1. Vol. 28Issue 6 & Vol. 29 Issue 1.6. A. Thompson and C. Wasshuber. Design of single-eletron systems througharti�ial evolution. Int. J. Cir. Theor. Appl., 28(6):585{599, 2000.7. A. Thompson and P. Layzell. Evolution of robustness in an eletronis design.In J. Miller, A. Thompson, P. Thomson, and T. Fogarty, editors, Pro. 3rd Int.Conf. on Evolvable Systems (ICES2000): From biology to hardware, volume1801 of LNCS, pages 218{228. Springer-Verlag, 2000.8. L. Gammaitoni, P. H�anggi, P. Jung, and F. Marhesoni. Stohasti resonane.Reviews of Modern Physis, 70(1):223{287, 1998.9. J. Miller, A. Thompson, P. Thomson, and T. Fogarty, editors. Pro. 3rd Int.Conf. on Evolvable Systems (ICES2000): From Biology to Hardware, volume1801 of LNCS. Springer-Verlag, 2000.10. A. Thompson, P. Layzell, and R. S. Zebulum. Explorations in design spae:Unonventional eletronis design through arti�ial evolution. IEEE Trans.Evol. Comp., 3(3):167{196, 1999.11. A. LaMara and R. E. Ladner. The inuene of ahes on the performane ofsorting. Journal of Algorithms, 31(1):66{104, 1999.12. F. H. Bennett III, J. R. Koza, J. Shipman, and O. Sti�elman. Building a par-allel omputer system for $18,000 that performs a half-petaop per day. InW. Banzhaf, J. Daida, A. E. Eiben, et al., editors, Pro. Geneti and Evolu-tionary Computation onferene (GECCO-99), pages 1484{1490. Morgan Kauf-mann, 1999.13. I. Harvey and A. Thompson. Through the labyrinth evolution �nds a way: Asilion ridge. In T. Higuhi, M. Iwata, and L. Weixin, editors, Pro. 1st Int.Conf. on Evolvable Systems (ICES`96), volume 1259 of LNCS, pages 406{422.Springer-Verlag, 1997.14. L. Barnett. Netrawling | optimal evolutionary searh with neutral networks.In Pro. Congress on Evolutionary Computation (CEC), pages 30{37. IEEE,2001.


