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Abstract. An attempt is made to isolate a class of design problems that only
evolutionary methods can tackle. A preliminary evolved design for a nano-electronic
circuit is found to contain a switching element that relies on the stochastic passage
of electrons due to thermal noise. Such phenomena have been exploited by natural
evolution in neural systems, but not before for circuit design. There is room for
an imaginative leap into areas of design space only accessible through evolution.
Analysis of the evolution of a second circuit reveals that neutral evolution played
a key role, and can be a natural property of evolutionary design. The developing
theory of evolutionary design promises practical future benefits.

1 Introduction

There are times when artificial evolution can be applied profitably even
though more traditional methods are available. It is also possible for evo-
lution to produce designs that could not practically be arrived at any other
way. In the latter case, creativity is needed to experiment with potential ap-
plications, because the possibility of such designs has not existed before. In
tandem, careful analysis of what exactly evolution can do is required. These
notes aim to give some insights into evolution beyond the scope of conven-
tional design. Examples (intended to be intriguing) are drawn from the au-
thor’s work on electronics design, but they illustrate principles for design in
general.

The notes are divided into two parts. ‘Opportunities’ offers some remarks
on the evolution of radically unconventional designs, and gives an example
of an evolved nano-electronic design that employs dynamical principles pre-
viously seen in the literature of neuroscience, but not of nano-electronics.
The ‘Algorithms’ section then provides food for thought on what types of
evolutionary algorithm may be able to tackle challenging design problems in
the future, given developments in computer architecture. An example shows
how a very simple mutation-driven algorithm can arrive at a surprisingly
sophisticated design if neutral evolution is allowed.
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2 Evolutionary Design: Opportunities

For the sake of discussion, let’s agree that evolution consists of selection
acting repeatedly on heritable variation, where that variation is essentially
blind, rather than incorporating detailed heuristics.

For design problems, the evolutionary algorithm (EA) determines some
of the structure and/or parameters of a reconfigurable object. This object
may exist in software, though that could be a simulation of the hardware of
an eventual implementation. The reconfigurable object might alternatively
be physically changeable hardware.

Typically, the object is embedded in some sort of environment, to which it
responds, which it influences, or in which it behaves. The EA designer devises
a fitness evaluation procedure that monitors and possibly manipulates the
environment and object, and returns objective function values.

In the examples to follow, the object is an electronic circuit, either sim-
ulated, or as a field-programmable gate array (FPGA) — a physically re-
configurable integrated circuit. The circuit behaves in the environment when
supplied with test inputs, and the evaluation procedure induces those inputs
and measures the quality of the behaviour. The evaluation may also include
non-behavioural measurements of the object itself, such as size and power
consumption.

A more subtle case would be the evolution of a musical score that is to
provoke a human to report a particular kind of feeling [1]. The musical score
is the reconfigurable object, but it is the behaviour of the whole immensely
more complex system that is crafted by evolution.

Figure 1 shows how the situation appears to the evolutionary algorithm.
It generates structural/parametric variations of the object, by applying vari-
ation operators (such as mutation and crossover) to some representation of
the object’s configuration. All it gets back are the measured objective val-
ues: we can think of the entire evaluation/environment/object complex as a
black-box system.
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Fig.1. A view of an evolutionary algorithm coupled to a ‘black box’ system.
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Defining this black-box system allows us to consider three separate cases
that tease apart the differences between evolutionary and conventional design:

a) Inverse model is tractable: If there is a tractable ‘inverse model’ of
the system, then there is a way of working out in advance a sequence
of variations that brings about a desired set of objective values. ‘Con-
ventional’ methods can be applied: the blind generate-and-test nature of
evolution is not essential, though it still may be that evolutionary meth-
ods are competitive.

b) Inverse model is not tractable, but forward model is: In this case,
we can predict the influence of variations upon the objective values, but
the system is not tractably invertible so we cannot derive in advance a se-
quence of variations to bring about a desired set of objective values. This
implies an iterative approach, where variations carefully selected accord-
ing to the forward model are applied in sequence. This kind of iterative
design-and-test is a common component of traditional approaches. Search
techniques, including evolutionary algorithms, can be competitive or in
some cases the only viable choice [2].

¢) Neither forward nor inverse models are tractable: There is neither
a way of discerning which variations will give improvements in the objec-
tive values, nor a way of predicting what will be the effects of variations
upon the objective values. Without evolution all is lost. By our tenta-
tively agreed definition, evolutionary methods are those that proceed by
incrementally applying variations that are essentially blind. Selection can
lead to an improvement in objective values with neither a forward nor an
inverse model. Whether evolutionary methods actually succeed in find-
ing a satisfactory design is another matter, but they are the only way
to do it. Note that our definition of evolution encompasses methods that
historically have not been related, such as simulated annealing.

Thus there is an entire class of design problems that can only be tackled by
evolutionary methods. Practically speaking, where are these problems? There
are few examples, because evolutionary design is in its infancy: previously
such design problems have had to be avoided or circumvented. Figure 2 shows
one example prior to the birth of the field of evolutionary computation.

We are now in a situation demanding a leap of imagination for EA prac-
titioners. Previously, design problems had to be constrained or simplified to
form type (a) or (b) systems. We can now explore a wider space of designs,
though these will inevitably seem strange.

Counsider the design for an electronic circuit shown in Figure 3. As cir-
cuit sizes are reduced towards the nano-scale, it becomes necessary to exploit
quantum effects directly for computation and data storage, rather than at-
tempting to suppress them in macroscopic approximations. How can quantum
effects best be employed? The literature is full of ideas [5], but there is no
consensus. This experiment, fully reported in [6], was a preliminary attempt
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Fig. 2. Golf balls: one of the few examples of true evolu-
tionary design outside of the field of evolutionary com-
putation. Dates are approximate.

(a) is a ‘featherie’ made by packing an enormous quan-
tity of feathers into a hide casing. These balls were
expensive.

(b) is an early ‘guttie’ made of solid gutta percha (a
rubberish tree sap). The primary advantage was lower
cost, but these smooth balls were found not to travel
as far as featheries.

It had been noticed that used featheries, which had ac-
quired nicks and cuts, travelled further than new feath-
eries. Adding surface texture to gutties was found to
have a similar effect, and various patterns of cuts (c)
and raised mouldings (d,e) were blindly but incremen-
tally experimented with. The first balls with a wound
rubber core (f) followed suit. Modern balls favour dim-
ples (g), and it is only relatively recently that the aero-
dynamics causing a rough ball to travel further have
been understood [3].

Interestingly, some of the very first explicit forays into
artificial evolution also designed the aerodynamics of a
physical system [4].
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Fig.3. An evolved ‘single electron’ NOR gate for a temperature of 340mK in a
simplified scenario. Fixed values: C2 1.000e-12F; C8 3.333e-13F; C9 3.333e-13F.
Evolved Values: C1 4.858e-19F; C3 9.969e-14F; C4 2.052e-16F; C5 1.000e-13F; C6
3.393e-16F; C7 2.975e-15F; J1 4.000e-19F 4.950e+0642; J2 4.000e-19F 5.766e+0512;
J3 4.059¢-19F 9.024e+4-0442; J4 4.237e-19F 5.854e+0442; J5 3.632e-16F 2.886e+0742;
J6 4.857e-19F 5.000e+0442; V4 -1.000e-04V; Viaise -8.368e-05V; Vipye -8.488e-06V
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Fig.4. The input/output relationship
of the NOR gate. The dashed and dot-
ted lines are the inputs, the solid line is
the output.

0.25
< Pial
7Y
-0.35
-0.4 #
-0.45

Fitness

-0.5 /‘ \‘\%1
-0.55 \\}
dossscssceseosea”
-0.6
0 100 200 300 400 500 600 700

Temperature (mK)

Fig.5. The NOR gate’s performance as
the temperature is varied.

www.manharaa.com



to allow evolution to explore the design space as a type (c¢) system, with the
minimum or simplifying constraints or prejudice.

The dots represent isolated conductive islands between which electrons
can move through quantum-mechanical tunnelling. The size, shape, and po-
sition of the islands determines their capacitive coupling (marked C,) and
the resistance which characterises a tunnel junction (J,). Although unreal-
istic in many respects, the experiment did respect the necessity of a local
topology that allows interacting islands to be physically adjacent.

This simple NOR gate was evolved in simulation for a temperature of
340mK. This is cold, but many studies concentrate on analysis at 0K; even
at 340mK the electrons have sufficient thermal energy (‘noise’) to challenge a
designer. Tt is expected that the performance of a circuit will fall with rising
temperature, but Figure 5 reveals that the evolved circuit’s behaviour also
degrades as the temperature is decreased from 340mK. This kind of behaviour
had never been seen in such proposed ‘single electron’ circuits before, and
indicates that the circuit actually exploits or relies upon the thermal noise
of the electrons at 340mK. This is not necessarily desirable, and perhaps
by evaluating across a range of temperatures during evolution a thermally
robust solution could be found [7], but we see immediately that evolution is
exploring a previously inaccessible part of design space.

Circled in Figure 3 is the well-known configuration of a ‘single electron
transistor’, which has subtle dynamics that act as a switch if used carefully.
It does indeed act as the main switching element in this circuit, but at 0K no
electrons ever have sufficient energy to pass through the switch, no matter
what the circuit’s inputs are. The circuit relies on the thermal energy of the
electrons at 340mK to excite them to pass through the switch in a stochastic
manner, influenced by the inputs. This type of phenomenon is found in a
variety of physical systems [8], and has been exploited by natural evolution
in some neural systems, but not before in electronic circuit design.

There is room for debate in the discussion above, but the argument is
compelling that we are now faced with an imaginative leap into new territories
of design space that are accessible through evolution. Some other explorations
in evolutionary electronics can be found in [9,10].

3 Evolutionary Design: Algorithms

A formal analysis of the computational complexity of an algorithm is not
a perfect guide to real-world performance. For example, the complexity of
sorting algorithms has been much studied, but the order in which they make
memory accesses can be central to performance on a modern computer having
a particular architecture of memory caches [11]. Similarly, it may be that
the evolutionary algorithms of choice for large-scale design problems in the
future will be those that can exploit parallel architectures, such as ‘Beowulf’
networks of cheap off-the-shelf PCs connected by low-bandwidth links [12].
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What kinds of evolutionary algorithms are capable of producing a com-
plex design? An experiment fully reported in [7] evolved the configuration of
an FPGA chip for a simple tone-discrimination task. The task was challeng-
ing because no prior rules were enforced regarding how the logic cells on the
chip could be connected, but the fitness evaluations required that configu-
rations should perform well on a variety of samples of the chip at different
temperatures. Without the constraints of digital design rules, most configu-
rations of the chip result in badly-behaved circuits, perhaps displaying wild
oscillations or an extreme sensitivity to the characteristics of the silicon or
its temperature. The experiment was to determine whether a robust solution
could be found that did not simply rediscover conventional design rules.

For a fitness evaluation, a variety of chips needed to be configured and
monitored: for example, one was heated, and another was in a freezer. The
chips ought to be well electrically isolated from each other to prevent mutual
interference. These factors meant that the best way of configuring the chips
was over a serial interface needing few wires, but that is slow. It was decided
to try a simple (1+1) evolution strategy (ES), so that only single mutations
needed to be sent to the chips most of the time, rather than full configurations.
The ES maintained a single individual, and tested mutants of it. If a mutation
caused a reduction in fitness, it was rejected, otherwise it was accepted. This
is simply a random-ascent hill climber allowing neutral moves, but has the
essential ingredients of evolution.

The experiment succeeded, and a robust asynchronous design was found
that could not have resulted from normal design principles. Why did the sim-
ple mutation-driven ES not get stuck on a local optimum? Consider Figure 6.
The circuits have been empirically pruned to show only the components and
connections involved in generating their behaviour. Circuit (a) is near the
beginning of a fitness plateau over which many neutral mutations are made.
(Some evaluation noise is visible, but the underlying fitnesses on the plateau
were equivalent.) It turns out that if we test all possible single mutations
of circuit (a), none of them result in improved fitness. At first glance, this
might suggest that the simple ES is now stuck. Thousands of neutral mu-
tations are then made, resulting in circuit (b) of equal fitness. Notice that
these mutations did not merely affect ‘junk’ circuitry around the periphery,
but made significant changes to the structure of the functional core shown
here. Then circuit (b) acquired a single mutation to give circuit (c), now
with a higher fitness. That single mutation was the connection shown in bold
running across the lowest FPGA cell in (¢). The connections shown dotted in
(b) are not involved in generating behaviour, but in (c¢) they are. The neutral
drift has moved us from a circuit that cannot be improved upon by single
mutations to one that can, and eventually an improving mutation was found.
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Fig. 6. (Centre) The fitness graph for a (1+1)ES used to design the configuration
of a field-programmable gate array chip. (a) The functional part of the circuit at
13000 mutations, near the beginning of a fitness plateau. (o) The functional part
of the circuit at the end of the plateau, 3144 mutations later. (¢) The functional
part of the circuit 1 mutation later, now with a higher fitness.
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No claim is made that this evolutionary run was efficient, but given its
desirability for hardware convenience it was able to work. The analysis shows
that neutral variations played a causal role in the course of evolution. The
ability to make neutral variations was a natural outcome of the application
of evolutionary variation operators to a design object, and is not peculiar
to this experiment. Neutrality is only recently coming to be discussed in the
evolutionary computation community (e.g. [13,14]), but appears to be an
inherent property of evolutionary design. Despite the apparent maturity of
the field of evolutionary computation, it is heartening that further theoretical
and empirical analysis of evolutionary design can be of practical power.

4 Conclusion

Given that the field of evolutionary computation is now fairly mature, it is
tempting to think that there is a good understanding of what evolutionary
design can achieve, and how. These notes have aimed to suggest the contrary.

An argument was offered that there is a whole class of design problems
that only methods with an evolutionary flavour can tackle. Designs of this
kind are found in nature, but not before for artifacts except in rare cases.
An example of an evolved nano-electronic circuit showed a dynamical effect
generally only exploited in the works of natural evolution. It was then seen
that neutral variation can be a natural part of evolutionary design that can
crucially affect the outcome. Without making any grand claims for the po-
tential achievements of artificial evolution in the future, it seems that the
enterprise is still young.

Thompson is grateful for an EPSRC Advanced Research Fellowship. Spe-
cial thanks to Phil Husbands, Inman Harvey, Paul Layzell, and Christoph
Wasshuber.
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