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Notes on Design Through Arti�
ial Evolution:Opportunities and AlgorithmsAdrian Thompson1Evolutionary & Adaptive Systems Group,University of Sussex,Brighton BN1 9QH, UKadrianth�
ogs.susx.a
.ukAbstra
t. An attempt is made to isolate a 
lass of design problems that onlyevolutionary methods 
an ta
kle. A preliminary evolved design for a nano-ele
troni

ir
uit is found to 
ontain a swit
hing element that relies on the sto
hasti
 passageof ele
trons due to thermal noise. Su
h phenomena have been exploited by naturalevolution in neural systems, but not before for 
ir
uit design. There is room foran imaginative leap into areas of design spa
e only a

essible through evolution.Analysis of the evolution of a se
ond 
ir
uit reveals that neutral evolution playeda key role, and 
an be a natural property of evolutionary design. The developingtheory of evolutionary design promises pra
ti
al future bene�ts.1 Introdu
tionThere are times when arti�
ial evolution 
an be applied pro�tably eventhough more traditional methods are available. It is also possible for evo-lution to produ
e designs that 
ould not pra
ti
ally be arrived at any otherway. In the latter 
ase, 
reativity is needed to experiment with potential ap-pli
ations, be
ause the possibility of su
h designs has not existed before. Intandem, 
areful analysis of what exa
tly evolution 
an do is required. Thesenotes aim to give some insights into evolution beyond the s
ope of 
onven-tional design. Examples (intended to be intriguing) are drawn from the au-thor's work on ele
troni
s design, but they illustrate prin
iples for design ingeneral.The notes are divided into two parts. `Opportunities' o�ers some remarkson the evolution of radi
ally un
onventional designs, and gives an exampleof an evolved nano-ele
troni
 design that employs dynami
al prin
iples pre-viously seen in the literature of neuros
ien
e, but not of nano-ele
troni
s.The `Algorithms' se
tion then provides food for thought on what types ofevolutionary algorithm may be able to ta
kle 
hallenging design problems inthe future, given developments in 
omputer ar
hite
ture. An example showshow a very simple mutation-driven algorithm 
an arrive at a surprisinglysophisti
ated design if neutral evolution is allowed.
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2 Evolutionary Design: OpportunitiesFor the sake of dis
ussion, let's agree that evolution 
onsists of sele
tiona
ting repeatedly on heritable variation, where that variation is essentiallyblind, rather than in
orporating detailed heuristi
s.For design problems, the evolutionary algorithm (EA) determines someof the stru
ture and/or parameters of a re
on�gurable obje
t. This obje
tmay exist in software, though that 
ould be a simulation of the hardware ofan eventual implementation. The re
on�gurable obje
t might alternativelybe physi
ally 
hangeable hardware.Typi
ally, the obje
t is embedded in some sort of environment, to whi
h itresponds, whi
h it in
uen
es, or in whi
h it behaves. The EA designer devisesa �tness evaluation pro
edure that monitors and possibly manipulates theenvironment and obje
t, and returns obje
tive fun
tion values.In the examples to follow, the obje
t is an ele
troni
 
ir
uit, either sim-ulated, or as a �eld-programmable gate array (FPGA) | a physi
ally re-
on�gurable integrated 
ir
uit. The 
ir
uit behaves in the environment whensupplied with test inputs, and the evaluation pro
edure indu
es those inputsand measures the quality of the behaviour. The evaluation may also in
ludenon-behavioural measurements of the obje
t itself, su
h as size and power
onsumption.A more subtle 
ase would be the evolution of a musi
al s
ore that is toprovoke a human to report a parti
ular kind of feeling [1℄. The musi
al s
oreis the re
on�gurable obje
t, but it is the behaviour of the whole immenselymore 
omplex system that is 
rafted by evolution.Figure 1 shows how the situation appears to the evolutionary algorithm.It generates stru
tural/parametri
 variations of the obje
t, by applying vari-ation operators (su
h as mutation and 
rossover) to some representation ofthe obje
t's 
on�guration. All it gets ba
k are the measured obje
tive val-ues: we 
an think of the entire evaluation/environment/obje
t 
omplex as abla
k-box system.
object

environment

evaluation procedure

objective
structural/parametric

variations
values

The "System"

Fig. 1. A view of an evolutionary algorithm 
oupled to a `bla
k box' system.
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De�ning this bla
k-box system allows us to 
onsider three separate 
asesthat tease apart the di�eren
es between evolutionary and 
onventional design:a) Inverse model is tra
table: If there is a tra
table `inverse model' ofthe system, then there is a way of working out in advan
e a sequen
eof variations that brings about a desired set of obje
tive values. `Con-ventional' methods 
an be applied: the blind generate-and-test nature ofevolution is not essential, though it still may be that evolutionary meth-ods are 
ompetitive.b) Inverse model is not tra
table, but forward model is: In this 
ase,we 
an predi
t the in
uen
e of variations upon the obje
tive values, butthe system is not tra
tably invertible so we 
annot derive in advan
e a se-quen
e of variations to bring about a desired set of obje
tive values. Thisimplies an iterative approa
h, where variations 
arefully sele
ted a

ord-ing to the forward model are applied in sequen
e. This kind of iterativedesign-and-test is a 
ommon 
omponent of traditional approa
hes. Sear
hte
hniques, in
luding evolutionary algorithms, 
an be 
ompetitive or insome 
ases the only viable 
hoi
e [2℄.
) Neither forward nor inverse models are tra
table: There is neithera way of dis
erning whi
h variations will give improvements in the obje
-tive values, nor a way of predi
ting what will be the e�e
ts of variationsupon the obje
tive values. Without evolution all is lost. By our tenta-tively agreed de�nition, evolutionary methods are those that pro
eed byin
rementally applying variations that are essentially blind. Sele
tion 
anlead to an improvement in obje
tive values with neither a forward nor aninverse model. Whether evolutionary methods a
tually su

eed in �nd-ing a satisfa
tory design is another matter, but they are the only wayto do it. Note that our de�nition of evolution en
ompasses methods thathistori
ally have not been related, su
h as simulated annealing.Thus there is an entire 
lass of design problems that 
an only be ta
kled byevolutionary methods. Pra
ti
ally speaking, where are these problems? Thereare few examples, be
ause evolutionary design is in its infan
y: previouslysu
h design problems have had to be avoided or 
ir
umvented. Figure 2 showsone example prior to the birth of the �eld of evolutionary 
omputation.We are now in a situation demanding a leap of imagination for EA pra
-titioners. Previously, design problems had to be 
onstrained or simpli�ed toform type (a) or (b) systems. We 
an now explore a wider spa
e of designs,though these will inevitably seem strange.Consider the design for an ele
troni
 
ir
uit shown in Figure 3. As 
ir-
uit sizes are redu
ed towards the nano-s
ale, it be
omes ne
essary to exploitquantum e�e
ts dire
tly for 
omputation and data storage, rather than at-tempting to suppress them in ma
ros
opi
 approximations. How 
an quantume�e
ts best be employed? The literature is full of ideas [5℄, but there is no
onsensus. This experiment, fully reported in [6℄, was a preliminary attempt
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Fig. 2. Golf balls: one of the few examples of true evolu-tionary design outside of the �eld of evolutionary 
om-putation. Dates are approximate.(a) is a `featherie' made by pa
king an enormous quan-tity of feathers into a hide 
asing. These balls wereexpensive.(b) is an early `guttie' made of solid gutta per
ha (arubberish tree sap). The primary advantage was lower
ost, but these smooth balls were found not to travelas far as featheries.It had been noti
ed that used featheries, whi
h had a
-quired ni
ks and 
uts, travelled further than new feath-eries. Adding surfa
e texture to gutties was found tohave a similar e�e
t, and various patterns of 
uts (
)and raised mouldings (d,e) were blindly but in
remen-tally experimented with. The �rst balls with a woundrubber 
ore (f) followed suit. Modern balls favour dim-ples (g), and it is only relatively re
ently that the aero-dynami
s 
ausing a rough ball to travel further havebeen understood [3℄.Interestingly, some of the very �rst expli
it forays intoarti�
ial evolution also designed the aerodynami
s of aphysi
al system [4℄.
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Fig. 3. An evolved `single ele
tron' NOR gate for a temperature of 340mK in asimpli�ed s
enario. Fixed values: C2 1.000e-12F; C8 3.333e-13F; C9 3.333e-13F.Evolved Values: C1 4.858e-19F; C3 9.969e-14F; C4 2.052e-16F; C5 1.000e-13F; C63.393e-16F; C7 2.975e-15F; J1 4.000e-19F 4.950e+06
; J2 4.000e-19F 5.766e+05
;J3 4.059e-19F 9.024e+04
; J4 4.237e-19F 5.854e+04
; J5 3.632e-16F 2.886e+07
;J6 4.857e-19F 5.000e+04
; Vb -1.000e-04V; Vfalse -8.368e-05V; Vtrue -8.488e-06V
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to allow evolution to explore the design spa
e as a type (
) system, with theminimum or simplifying 
onstraints or prejudi
e.The dots represent isolated 
ondu
tive islands between whi
h ele
trons
an move through quantum-me
hani
al tunnelling. The size, shape, and po-sition of the islands determines their 
apa
itive 
oupling (marked Cn) andthe resistan
e whi
h 
hara
terises a tunnel jun
tion (Jn). Although unreal-isti
 in many respe
ts, the experiment did respe
t the ne
essity of a lo
altopology that allows intera
ting islands to be physi
ally adja
ent.This simple NOR gate was evolved in simulation for a temperature of340mK. This is 
old, but many studies 
on
entrate on analysis at 0K; evenat 340mK the ele
trons have suÆ
ient thermal energy (`noise') to 
hallenge adesigner. It is expe
ted that the performan
e of a 
ir
uit will fall with risingtemperature, but Figure 5 reveals that the evolved 
ir
uit's behaviour alsodegrades as the temperature is de
reased from 340mK. This kind of behaviourhad never been seen in su
h proposed `single ele
tron' 
ir
uits before, andindi
ates that the 
ir
uit a
tually exploits or relies upon the thermal noiseof the ele
trons at 340mK. This is not ne
essarily desirable, and perhapsby evaluating a
ross a range of temperatures during evolution a thermallyrobust solution 
ould be found [7℄, but we see immediately that evolution isexploring a previously ina

essible part of design spa
e.Cir
led in Figure 3 is the well-known 
on�guration of a `single ele
trontransistor', whi
h has subtle dynami
s that a
t as a swit
h if used 
arefully.It does indeed a
t as the main swit
hing element in this 
ir
uit, but at 0K noele
trons ever have suÆ
ient energy to pass through the swit
h, no matterwhat the 
ir
uit's inputs are. The 
ir
uit relies on the thermal energy of theele
trons at 340mK to ex
ite them to pass through the swit
h in a sto
hasti
manner, in
uen
ed by the inputs. This type of phenomenon is found in avariety of physi
al systems [8℄, and has been exploited by natural evolutionin some neural systems, but not before in ele
troni
 
ir
uit design.There is room for debate in the dis
ussion above, but the argument is
ompelling that we are now fa
ed with an imaginative leap into new territoriesof design spa
e that are a

essible through evolution. Some other explorationsin evolutionary ele
troni
s 
an be found in [9,10℄.3 Evolutionary Design: AlgorithmsA formal analysis of the 
omputational 
omplexity of an algorithm is nota perfe
t guide to real-world performan
e. For example, the 
omplexity ofsorting algorithms has been mu
h studied, but the order in whi
h they makememory a

esses 
an be 
entral to performan
e on a modern 
omputer havinga parti
ular ar
hite
ture of memory 
a
hes [11℄. Similarly, it may be thatthe evolutionary algorithms of 
hoi
e for large-s
ale design problems in thefuture will be those that 
an exploit parallel ar
hite
tures, su
h as `Beowulf'networks of 
heap o�-the-shelf PCs 
onne
ted by low-bandwidth links [12℄.
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What kinds of evolutionary algorithms are 
apable of produ
ing a 
om-plex design? An experiment fully reported in [7℄ evolved the 
on�guration ofan FPGA 
hip for a simple tone-dis
rimination task. The task was 
halleng-ing be
ause no prior rules were enfor
ed regarding how the logi
 
ells on the
hip 
ould be 
onne
ted, but the �tness evaluations required that 
on�gu-rations should perform well on a variety of samples of the 
hip at di�erenttemperatures. Without the 
onstraints of digital design rules, most 
on�gu-rations of the 
hip result in badly-behaved 
ir
uits, perhaps displaying wildos
illations or an extreme sensitivity to the 
hara
teristi
s of the sili
on orits temperature. The experiment was to determine whether a robust solution
ould be found that did not simply redis
over 
onventional design rules.For a �tness evaluation, a variety of 
hips needed to be 
on�gured andmonitored: for example, one was heated, and another was in a freezer. The
hips ought to be well ele
tri
ally isolated from ea
h other to prevent mutualinterferen
e. These fa
tors meant that the best way of 
on�guring the 
hipswas over a serial interfa
e needing few wires, but that is slow. It was de
idedto try a simple (1+1) evolution strategy (ES), so that only single mutationsneeded to be sent to the 
hips most of the time, rather than full 
on�gurations.The ES maintained a single individual, and tested mutants of it. If a mutation
aused a redu
tion in �tness, it was reje
ted, otherwise it was a

epted. Thisis simply a random-as
ent hill 
limber allowing neutral moves, but has theessential ingredients of evolution.The experiment su

eeded, and a robust asyn
hronous design was foundthat 
ould not have resulted from normal design prin
iples. Why did the sim-ple mutation-driven ES not get stu
k on a lo
al optimum? Consider Figure 6.The 
ir
uits have been empiri
ally pruned to show only the 
omponents and
onne
tions involved in generating their behaviour. Cir
uit (a) is near thebeginning of a �tness plateau over whi
h many neutral mutations are made.(Some evaluation noise is visible, but the underlying �tnesses on the plateauwere equivalent.) It turns out that if we test all possible single mutationsof 
ir
uit (a), none of them result in improved �tness. At �rst glan
e, thismight suggest that the simple ES is now stu
k. Thousands of neutral mu-tations are then made, resulting in 
ir
uit (b) of equal �tness. Noti
e thatthese mutations did not merely a�e
t `junk' 
ir
uitry around the periphery,but made signi�
ant 
hanges to the stru
ture of the fun
tional 
ore shownhere. Then 
ir
uit (b) a
quired a single mutation to give 
ir
uit (
), nowwith a higher �tness. That single mutation was the 
onne
tion shown in boldrunning a
ross the lowest FPGA 
ell in (
). The 
onne
tions shown dotted in(b) are not involved in generating behaviour, but in (
) they are. The neutraldrift has moved us from a 
ir
uit that 
annot be improved upon by singlemutations to one that 
an, and eventually an improving mutation was found.
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Fig. 6. (Centre) The �tness graph for a (1+1)ES used to design the 
on�gurationof a �eld-programmable gate array 
hip. (a) The fun
tional part of the 
ir
uit at13000 mutations, near the beginning of a �tness plateau. (b) The fun
tional partof the 
ir
uit at the end of the plateau, 3144 mutations later. (
) The fun
tionalpart of the 
ir
uit 1 mutation later, now with a higher �tness.
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No 
laim is made that this evolutionary run was eÆ
ient, but given itsdesirability for hardware 
onvenien
e it was able to work. The analysis showsthat neutral variations played a 
ausal role in the 
ourse of evolution. Theability to make neutral variations was a natural out
ome of the appli
ationof evolutionary variation operators to a design obje
t, and is not pe
uliarto this experiment. Neutrality is only re
ently 
oming to be dis
ussed in theevolutionary 
omputation 
ommunity (e.g. [13,14℄), but appears to be aninherent property of evolutionary design. Despite the apparent maturity ofthe �eld of evolutionary 
omputation, it is heartening that further theoreti
aland empiri
al analysis of evolutionary design 
an be of pra
ti
al power.4 Con
lusionGiven that the �eld of evolutionary 
omputation is now fairly mature, it istempting to think that there is a good understanding of what evolutionarydesign 
an a
hieve, and how. These notes have aimed to suggest the 
ontrary.An argument was o�ered that there is a whole 
lass of design problemsthat only methods with an evolutionary 
avour 
an ta
kle. Designs of thiskind are found in nature, but not before for artifa
ts ex
ept in rare 
ases.An example of an evolved nano-ele
troni
 
ir
uit showed a dynami
al e�e
tgenerally only exploited in the works of natural evolution. It was then seenthat neutral variation 
an be a natural part of evolutionary design that 
an
ru
ially a�e
t the out
ome. Without making any grand 
laims for the po-tential a
hievements of arti�
ial evolution in the future, it seems that theenterprise is still young.Thompson is grateful for an EPSRC Advan
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